Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Food Measurement & Characterization ; 17(1):944-955, 2023.
Article in English | ProQuest Central | ID: covidwho-2231692

ABSTRACT

This study employed the response surface methodology to optimize the extraction conditions for recovering vitamins D2 and K1 from green leafy vegetables using ultrasonication-assisted extraction. The vitamin content was determined using an Accucore C18 column and a UPLC-Q-ToF/MS method. An RSM-I-Optimal design was used for designing the experiment to find the best combination of solvent level (mL), sonication time (min), sonication frequency (kHz), and temperature (°C). The experimental data from a 25-sample set were fitted to a second-order polynomial equation using multiple regression analysis. The extraction models had R2 values of 0.895 and 0.896, respectively, and the probability values (p < 0.0001) indicated that the regression model was highly significant. The optimal extraction conditions were: solvent level of 65 mL, sonication time of 45 min, sonication frequency of 70 kHz, and temperature of 45 °C. Under these conditions, the predicted recovery (%) values for vitamins D2 and K1 were 90.7% and 90.4%, respectively. This study has the potential to use the reported extraction method for routine quantification of vitamins D2 and K1 in the laboratory using UPLC-Q-ToF/MS.

2.
Food Sci Nutr ; 11(4): 1634-1656, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2172905

ABSTRACT

Vitamin K1 (VitK1) and Vitamin K2 (VitK2), two important naturally occurring micronutrients in the VitK family, found, respectively, in green leafy plants and algae (VitK1) and animal and fermented foods (VitK2). The present review explores the multiple biological functions of VitK2 from recently published in vitro and in vivo studies, including promotion of osteogenesis, prevention of calcification, relief of menopausal symptoms, enhancement of mitochondrial energy release, hepato- and neuro-protective effects, and possible use in treatment of coronavirus disease. The mechanisms of action associated with these biological effects are also explored. Overall, the findings presented here suggest that VitK, especially VitK2, is an important nutrient family for the normal functioning of human health. It acts on almost all major body systems and directly or indirectly participates in and regulates hundreds of physiological or pathological processes. However, as biological and clinical data are still inconsistent and conflicting, more in-depth investigations are warranted to elucidate its potential as a therapeutic strategy to prevent and treat a range of disease conditions.

3.
Nutrients ; 14(2)2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613924

ABSTRACT

Background & Aims: Previous results from observational, interventional studies and in vitro experiments suggest that certain micronutrients possess anti-viral and immunomodulatory activities. In particular, it has been hypothesized that zinc, selenium, copper and vitamin K1 have strong potential for prophylaxis and treatment of COVID-19. We aimed to test whether genetically predicted Zn, Se, Cu or vitamin K1 levels have a causal effect on COVID-19 related outcomes, including risk of infection, hospitalization and critical illness. Methods: We employed a two-sample Mendelian Randomization (MR) analysis. Our genetic variants derived from European-ancestry GWAS reflected circulating levels of Zn, Cu, Se in red blood cells as well as Se and vitamin K1 in serum/plasma. For the COVID-19 outcome GWAS, we used infection, hospitalization or critical illness. Our inverse-variance weighted (IVW) MR analysis was complemented by sensitivity analyses including a more liberal selection of variants at a genome-wide sub-significant threshold, MR-Egger and weighted median/mode tests. Results: Circulating micronutrient levels show limited evidence of association with COVID-19 infection, with the odds ratio [OR] ranging from 0.97 (95% CI: 0.87-1.08, p-value = 0.55) for zinc to 1.07 (95% CI: 1.00-1.14, p-value = 0.06)-i.e., no beneficial effect for copper was observed per 1 SD increase in exposure. Similarly minimal evidence was obtained for the hospitalization and critical illness outcomes with OR from 0.98 (95% CI: 0.87-1.09, p-value = 0.66) for vitamin K1 to 1.07 (95% CI: 0.88-1.29, p-value = 0.49) for copper, and from 0.93 (95% CI: 0.72-1.19, p-value = 0.55) for vitamin K1 to 1.21 (95% CI: 0.79-1.86, p-value = 0.39) for zinc, respectively. Conclusions: This study does not provide evidence that supplementation with zinc, selenium, copper or vitamin K1 can prevent SARS-CoV-2 infection, critical illness or hospitalization for COVID-19.


Subject(s)
COVID-19/genetics , Copper/blood , Selenium/blood , Vitamin K 1/blood , Zinc/blood , Adolescent , Adult , Child , Cohort Studies , Female , Genome-Wide Association Study , Hospitalization/statistics & numerical data , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Odds Ratio , Pregnancy , SARS-CoV-2 , White People/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL